a2 United States Patent

Zhu

US009405342B2

US 9,405,342 B2
Aug. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

SYSTEM AND METHOD FOR PROVIDING
TIMING

Inventor: Dao-Yi Zhu, Acton, MA (US)

Assignee: Schneider Electric IT Corporation,
Boston, MA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 916 days.

Appl. No.: 12/384,175

Filed: Apr. 1,2009

Prior Publication Data

US 2010/0254228 A1l Oct. 7, 2010

Int. Cl1.

GO6F 1/04
GO6F 1726
G04G 5/00

U.S. CL
CPC . GOG6F 1/263 (2013.01); G04G 5/00 (2013.01)

Field of Classification Search
CPC ... GO4F 1/00; G04G 5/00; G04G 5/02;
G04G 5/002; GO4AT 5/00; GOGF 1/263; GOGF
15/7814; GOGF 15/7817; HO04M 1/122
USPC e 368/46-47, 28
See application file for complete search history.

(2006.01)
(2006.01)
(2013.01)

ARITHVETIC
LOGIC UNIT

MEMORY
5

=4

I

GENERAL
W [REGISTERS PINGTIMER 2
210 25
210 PONGTIMER 2

=3
RS

CONTROL UNIT
20

A
BUS INTERFACE I A
DIRECT MEMORY
ACCESS (DMA)
CLOCK
240

CONTROLLER
20

PERIODICALLY UPDATE
PING AND PONG TIMERS
(EG., EVERYZI:§47ILLISECOND)

INTERRUPT
CONTROLLER
5

(56) References Cited

U.S. PATENT DOCUMENTS

4,761,644 A * 8/1988 Kawai GO7C 9/00182
307/10.2

5,438,681 A * 8/1995 Mensch, Jr. GO6F 1/08
716/110

5,481,507 A * 1/1996 Suzuki G04G 3/02
368/200

5,717,362 A * 2/1998 Maneatisetal. 331/57
5,781,869 A * 7/1998 Parlett, Jr. GO1P 15/036
307/10.1

6,048,209 A * 4/2000 Bailey GO09B 23/281
434/238

6,141,774 A * 10/2000 Mattheis GO6F 11/0763
714/27

6,625,701 B1* 9/2003 Arimillietal. 711/152
6,766,459 B2* 7/2004 Shimura etal. . 713/320
7,171,542 B1* 12007 Alfano GO6F 1/08
710/317

7,251,256 B1* 7/2007 Barryetal. 370/503
8,553,503 B2* 10/2013 Molchanov et al. ... 368/120
2003/0085767 Al* 5/2003 Nohara 3M 1/0619
331/74

* cited by examiner

Primary Examiner — Sean Kayes
(74) Attorney, Agent, or Firm — Hamilton, Brook, Smith &
Reynolds, P.C.

(57) ABSTRACT

To overcome potential problems associated with overflowing
counters/timers, embodiments of the present invention
include a ping timer and a pong timer offset from each other,
and a time checker that accesses at any one timer either the
ping timer or the pong timer to determine whether a time
interval has passed. Upon passage of the time interval, the
time checker switches access from the ping timer to the pong
timer before the ping timer reaches an overtlow state, thereby
avoiding problems associated with counter/timer overflow.

27 Claims, 10 Drawing Sheets

—~—MAXIMUM
/ VALUE

30 ~

MM
NG | VALUE

VALUE 1
i
02~
MAXIMUM
1/20F VALUE
MAXIMUM
PONG VALUE
TIMER

MINIMUM
VALUE.

VALUE T

0 i 2 3 " 15] 7

U.S. Patent Aug. 2, 2016 Sheet 1 of 10 US 9,405,342 B2

105
/
. UNINTERRUPTIBLE POWER SUPPLY (UPS)

POMER doeeenmmmoeeaoooecPONER NS
SOURCE 3~ o eonee

| L{ CHARGING BATTERY I-« UTPU

B T i —— ____»

POWER <)
120 125

POWER FLOW UNDER NORMAL CONDITIONS

FIG. 1A
(PRIOR ART)

105
/

10 UNINTERRUPTIBLE POWER SUPPLY (UPS)

POWER 115
SOURCE
— POWER
CHARGING BATTERY _-{-™ouTPUT
UNIT L.
Y A} POWER
120 125

POWER FLOW DURING A LOSS OF POWER

FIG. 1B
(PRIOR ART)

US 9,405,342 B2

Sheet 2 of 10

Aug. 2,2016

U.S. Patent

¢ 9Ol
[74
YITI08INOD
LdNYYILNI
e 0ore
0¢C
H3ITI04INOD | #0019
(YWa) SS300V
52 ! AHOW3W 193YIa
(ANODISITIIN A¥3AT “93) "_
SYIWIL ONOd ONVONId
31¥adn ATI¥DIQ0N3d ,,4 JOV443LNI SNE
02
1INN TOHLNOD
20¢ ¥3IWILONOJ 7 0z
14 d3NIL ONId SY31S193Y :zmﬁo;_\mwo._
= TVRIINED DILIWHLIEY
AYOWIW

7

002

US 9,405,342 B2

Sheet 3 of 10

Aug. 2, 2016

U.S. Patent

INIVA
WNWIXYN

2

0}

ANTVYA
WNWININ

ANTVA
W

AWINIW

WNWIXYIN

— - — —— = = B - = . e - -

kmz._<>

d3NIL
ONOd

U.S. Patent Aug. 2, 2016 Sheet 4 of 10 US 9,405,342 B2

405
e T .
g MEMORY i
!] !
{ | PING TIMER (E.G., 16-BIT PONG TIMER (E.G., 16-BIT| |
| | UNSIGNED INTEGER) UNSIGNED INTEGER) | |
: 410 415 !
! |
l !
\

' \
1 |
| l
! MODULE USING TIME |
) CHECKER TO DETERMINE | TIME CHECKER | |
} WHEN TIME INTERVAL 425 |
} PASSES |
| 420 I
(|
M e J
FIG. 4A
405
S — T — -
.' MEMORY i
! i
i | PING TIMER (CROSSED PONG TIMER (LESS]
| | HALFWAY POINTTO THAN HALFWAY TO .
; OVERFLOW STATE) OVERFLOW STATE) :
; 410 415 !
\)
£ h
i |
| MODULE USING TIME :
) CHECKER TO DETERMINE | TIME CHECKER | |
} WHEN TIME INTERVAL 425 !
: PASSES .
| 420 I
|
\ J

U.S. Patent Aug. 2, 2016 Sheet 5 of 10 US 9,405,342 B2

START y 0

505
¥ / 510 515
INITIALIZE PING TIMER V4 /
T0"0"ANDPONG | [nmaLizETIME] [SET TIME INTERVAL
TIMER TO 1/2 OF "1 CHECKER > OF TIME CHECKER |
MAXIMUM VALUE
[DETERMINE FTiME | | POINTTIME CHECKER |
| INTERVAL HAS PASSED | TOPINGTIMER =
- (CURRENT TIMER)
540
535 /
/ DETERMINE WHETHER
[TAKE || VALUE OF CURRENT
ACTION TIMER EXCEEDS 1/2 OF
MAXIMUM VALUE
550
/
POINT TIME CHECKER
TOOTHER TIMER |
(RESULTING IN A NEW
CURRENT TIMER)
560
/
RESET TIME CONTINUE
INTERVAL TIMING

FIG. 5

U.S. Patent Aug. 2, 2016 Sheet 6 of 10 US 9,405,342 B2
Name Value Type Radix [«

¢ OninvTimeQutCount | 7 int16 dec
B® CheckTimerCapEE |{.} CHECK_TIMER hex
B8 = pTimer 0x000088DD | RTC_REC* hex

Q@ Hours 0 Uint16 unsigned

© Minutes 29 Uint16 unsigned

© Seconds 1774 Uint16 unsigned

© MSecs 4622 Uint16 unsigned

¢ EndTime 1802 Uint16 unsigned

Q Interval 34 Uint16 unsigned
B¢ Flag {.} union FUNC_TIMFLG | hex

¢ all 1 Uint16 unsigned
B® bit {.} struct FTmr_FLAGS hex
B¢® CheckTimerCal {.} CHECK_TIMER hex
B¢ CheckTimerCap {.} CHECK_TIMER hex
B = plimer 0x000088DD | RTC_REC* hex

¢ Hours 0 Uint16 unsigned

¢ Minutes 29 Uint16 unsigned

¢ Seconds 1774 Uint16 unsigned

¢ MSecs 4632 Uint16 unsigned

¢ EndTime 1775 Uint16 unsigned

o Interval 1 Uint16 unsigned
B® Flag {.} union FUNC_TIMFLG | hex
B ®| CheckTimerCharging | {...} CHECK_TIMER hex
B = pTimer 0x000088DD | RTC_REC* hex

¢ Hours 0 Uint16 unsigned

© Minutes 29 Uint16 unsigned

© Seconds 1774 Uint16 unsigned

© MSecs 4640 Uint16 unsigned

¢ EndTime 1825 Uint16 unsigned

o Interval 76 Uint16 unsigned
B® Flag {} union FUNC_TIMFLG [hex

B® BattRegs {.} BATTERY_REGS_TYPE | hex d |

FIG. 6A

U.S. Patent

Aug. 2, 2016 Sheet 7 of 10 US 9,405,342 B2
Name Value Type Radix

B8 ® TransitionChecker | {...} CHECK_TIMER hex
8 =pTimer 0x000088D9 | RTC_REC* hex

@ Hours 32768 Uint16 unsigned

Q Minutes 32809 Uint16 unsigned

© Seconds 35237 Uint16 unsigned

@ MSecs 12342 Uint16 unsigned

QEndTime 11400 Uint16 unsigned

¢ Interval 500 Uint16 unsigned
B ®Flag {.} union FUNC_TIMFLG | hex
8 @ NineMinsChecker | {...} CHECK_TIMER hex
8 = pTimer 0x000088D9 | RTC_REC* hex

© Hours 32768 Uint16 unsigned

@ Minutes 32809 Uint16 unsigned

© Seconds 35237 Uint16 unsigned

@ MSecs 12352 Uint16 unsigned

QEndTime 32818 Uint16 unsigned

o Interval 9 Uint16 unsigned
B ®Flag {.} union FUNC_TIMFLG | hex
B ® TenSecsChecker | {...} CHECK_TIMER hex
8 = pTimer 0x000088D9 | RTC_REC* hex

© Hours 32768 Uint16 unsigned

@ Minutes 32809 Uint16 unsigned

© Seconds 35237 Uint16 unsigned

@ MSecs 12364 Uint16 unsigned

©EndTime 35246 Uint16 unsigned

QInterval 10 Uint16 unsigned
B8 ®Flag {.} union FUNC_TIMFLG | hex
B ® FiveSecsChecker |{...} CHECK_TIMER hex
B8 < pTimer 0x000088D9 | RTC_REC* hex

FIG. 6B

U.S. Patent Aug. 2, 2016 Sheet 8 of 10 US 9,405,342 B2
Name Value Type Radix

B @ TransitionChecker {.} CHECK_TIMER hex
B = pTimer 0x000088D9 RTC_REC* hex

© Hours 32768 Uint16 unsigned

o[Minutes 32806 Uint16 unsigned

© Seconds 35060 Uint16 unsigned

© MSecs 31696 Uint16 unsigned

QEndTime 31010 | Uint16 ‘unsigned

QInterval 500 Uint16 unsigned
B8 ®©Flag {.} union FUNC_TIMFLG | hex
B ® NineMinsChecker {.} CHECK_TIMER hex
B8 =pTimer 0x000088DD RTC_REC* hex

© Hours 0 Uint16 unsigned

9 Minutes 38 Uint16 unsigned

© Seconds 2292 Uint16 unsigned

9 MSecs 64477 Uint16 unsigned

Q@ EndTime 47 Uint16 unsigned

QInterval 9 Uint16 unsigned
B ®Flag {.} union FUNC_TIMFLG | hex
B ® TenSecsChecker {.} CHECK_TIMER hex
B8 = pTimer 0x000088DD RTC_REC* hex

¢ Hours 0 Uint16 unsigned

¢ Minutes 38 Uint16 unsigned

¢ Seconds 2292 Uint16 unsigned

¢ MSecs 64489 Uint16 unsigned

©EndTime 2301 Uint16 unsigned

¢ Interval 10 Uint16 unsigned
B @Flag {.} union FUNC_TIMFLG | hex
B @ FiveSecsChecker ..} CHECK_TIMER hex
8 = pTlimer 0x000088DD RTC_REC* hex

FIG. 6C

U.S. Patent Aug. 2, 2016 Sheet 9 of 10 US 9,405,342 B2

’/705
MEMORY
NANOSECONDS 721 | 710
\
MCROSECONDS 122 |, _—
MILLISECONDS 723 |\ |ACCESSING
N
SECONDS 128 |33 | STRUCTURE TS
R A
MINUTES 725 |---3 UNIT
-~ RegiaRy 122
- //”
HOURS 120 1/ | | ADDRESS UPDATE TIME
DAYS 21 [/7 7 REPRESENTATIONS
=1/ ur (E.G., EVERY
MONTHS 728 |/ NANOSECOND)
, 737
YEARS 729

FIG. 7

US 9,405,342 B2

Sheet 10 of 10

Aug. 2,2016

U.S. Patent

8 Old
¥3LHIANOD |
ov-oa |
/
' “ [Saouvio
[>1 d3143ANI \ow M3LLYE] AY3LIVE
m\v A w\
l
4 /1 Yy
/ I 110MINOD [+——
1Nd1NO I
a3x4ove
A - waLan %
B WHLN3N R < AME B Y3LH] B 3NN ﬁu
HOLIMS ¥34SNWL 39NS/INT
indino * AN > 2 LNNIOY
AINO vl
-394NS
) TVALN3N 8 3INIT ANNONS
) aGNAoYS
01"

US 9,405,342 B2

1
SYSTEM AND METHOD FOR PROVIDING
TIMING

BACKGROUND OF THE INVENTION

An uninterruptible power supply (UPS), also known as a
continuous power supply (CPS) or battery backup, is a device
that maintains a continuous supply of electric power to con-
nected equipment, such as, for example, computers or tele-
communications equipment, by supplying power from a
separate source when a normal power source is not available.
A UPS differs from an auxiliary power supply or standby
generator, which does not provide instant protection from a
momentary power interruption. A UPS can be used to provide
uninterrupted power to equipment for a certain duration, for
example, thirty minutes, until a generator can be turned on or
until the normal power source is restored. Integrated systems
that have UPS and standby generator components are often
referred to as emergency power systems. There are different
types of UPS systems. A UPS system may remain idle until a
power failure occurs and then quickly switches from utility
power to its own power source, or may continuously power
the protected equipment from its energy reserves stored in a
battery or flywheel while simultaneously replenishing its
reserves from another power source. Most types of UPS sys-
tems use timers to regulate certain functionality. Such timers
use system resources, and a large number of timers can
greatly increase the overall cost of a system. This is also true
for most embedded systems.

SUMMARY OF THE INVENTION

One embodiment of the present invention is a system for
providing timing. The system includes a first timer (i.e., a
ping timer) and a second timer (i.e., a pong timer), where the
value of the pong timer is offset from the value of the ping
timer. The system also includes a time checker that accesses
the ping timer to determine whether a time interval has passed
and, upon determining that the time interval has passed,
switches access to the pong timer before the ping timer
reaches an overflow state. As used herein, the generically
phrased first and second timers are referred to as ping and
pong timers, respectively, to distinguish between the two
timers.

Another embodiment is a system for providing a timer. The
system includes multiple processor-level memory locations
storing a representation of time at a lowest level of time
granularity and multiple other representations of time at
respectively higher levels of time granularity, an update unit
configured to update the representations of time on a regular
basis at least as often as the lowest level of time granularity,
and a data structure enabling access to the representations of
time, where the data structure includes address information
for the memory locations.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more
particular description of example embodiments of the inven-
tion, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout
the different views. The drawings are not necessarily to scale,
emphasis instead being placed upon illustrating embodi-
ments of the present invention.

FIGS. 1A and 1B are schematic diagrams illustrating func-
tionality of an Uninterruptible Power Supply (UPS).

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 is a block diagram illustrating a ping timer and a
pong timer in the memory of a basic computer design.

FIG. 3 is a graph illustrating changing values of a ping
timer and a pong timer over time, and illustrating an offset
between the ping and pong timers.

FIGS. 4A and 4B are schematic diagrams illustrating a
ping timer, a pong timer, and a time checker that access the
ping and pong timers.

FIG. 5 is a flow diagram illustrating using a ping timer, a
pong timer, and a time checker to provide timing.

FIGS. 6 A-C illustrate example values of variables that may
be used to implement a ping-pong timer system.

FIG. 7 is a block diagram illustrating a system for provid-
ing a timer.

FIG. 8 isablock diagram illustrating a typical UPS system.

DETAILED DESCRIPTION OF THE INVENTION

A description of example embodiments of the invention
follows.

FIG. 1A is a schematic diagram illustrating the power flow
of'an Uninterruptible Power Supply (UPS) 105 under normal
conditions (i.e., without a power failure). Normally, the UPS
105 transfers power to a connected device (not shown) with-
out using a battery 125 of the UPS 105 as a source of the
power. More specifically, power is transferred from a power
source 110, such as a municipal electricity supply, to the UPS
105, and the UPS 105 transfers the power to the connected
device (not shown) via a power output 115. The UPS 105 may
maintain a sufficient level of power in its battery 125 using a
charging unit 120, which obtains power from the power
source 110.

FIG. 1B is a schematic diagram illustrating the power flow
of'the UPS 105 during a loss of power from the source 110. In
an event a power failure occurs with respect to the power
source 110, the UPS 105 switches from supplying power to
the connected device from the power source 110 to supplying
power to the connected device from the battery 125. Once the
power source’s failure is corrected, the UPS 105 may then
switch back to supplying power to the connected device from
the power source 110 and may recharge the battery 125.

Many UPS systems are implemented as embedded sys-
tems, in which timers are used to regulate certain functional-
ity for the UPS systems. Because the timers are implemented
in embedded systems, the systems suffer when too much
cycle time is used for timing control. Thus, a large amount of
individual timers slow down the whole system. As timers are
added in a typical system, there is an exponential increase in
use of system resources. Additionally, adapting typical timing
controls to different processors is tedious and prone to error.

Embodiments of the present invention solve these prob-
lems by limiting the number of timers to two physical timers;
a ping timer and a pong timer. Using these two timers, many
logical timers may be instantiated that access the ping and
pong timers. This approach makes it easy to add or remove
timers of a system, and improve the adaptability of timing
control to different processors. The same logic can be used to
achieve any level of timing precision, so long as the processor
can handle that level of precision. In most embodiments,
16-bit variables may be used to handle any length of timing
control, with only fixed switching time overhead. Further, as
logical timers are added to the system, there is only a linear
increase in use of system resources. The manner in which the
logical timers (or “time checkers”) use the ping and pong
timers is described below.

FIG. 2 is a block diagram 205 illustrating a basic architec-
ture of a processing device, according to an embodiment of

US 9,405,342 B2

3

the present invention. The diagram 205 is simple, but is rep-
resentative of more advanced computing designs. Illustrated
in the diagram 205 is a ping timer 201 and a pong timer 202
in the memory 225 of the basic computer design. Overall, the
illustrated architecture includes an arithmetic logic unit
(ALU) 210, registers 215, a control unit 220, memory 225, a
direct memory access (DMA) controller 230, an interrupt
controller 235, and a clock 240.

In steps timed by a signal from the clock 240, the control
unit 220 repeats a cycle of fetching an instruction from
memory 225 to be executed, decoding the instruction, execut-
ing the instruction, and storing the results of the instruction.
The control unit uses the ALU 210 to execute arithmetic and
logic instructions, stores information in the registers 215, and
communicates with the rest of the architecture through a
processor bus.

A DMA controller 230 may be used to transfer data to and
from the memory. In that situation, the memory can be
accessed directly by the DMA controller 230 and the control
unit 220 is relinquished (reducing its overhead).

Interrupt is allowed by the control unit 220 for checking
whether an interrupt signal is set before executing an instruc-
tion. An interrupt controller 235 may receive several interrupt
requests, in which case the interrupt controller 235 aggregates
the inputs along with information used to distinguish the
interrupt requests. An interrupt handler, also known as an
interrupt service routine (ISR), is a callback subroutine in an
operating system or device driver for which execution is
triggered by the reception of an interrupt. The handler is
initiated by either hardware interrupts or interrupt instruc-
tions in software, and is used for servicing hardware devices
and transitions between protected modes of operation, such as
system calls. An interrupt service routine is used to determine
precise timing increments at the level of granularity of a basic
time unit (e.g. milliseconds). In the example embodiments,
the ping and pong timers 201, 202 are updated 237 through
the use of such interrupts.

FIG. 3 is a graph illustrating the changing values of a both
ping timer 301 and a pong timer 302 over time, and illustrat-
ing an offset between the ping and pong timers 301, 302,
according to an embodiment of the present invention. Many
timing systems include a counter that is used as a measure of
time. Such a counter is allocated a certain number of bits (e.g.,
128 bits). To save physical resources and associated costs, the
number of bits may be reduced, for example, to 16 bits. One
problem inherent in such counters as a result of the limitations
of computer memory is that they are subject to overflowing;
that is, a counter will reach a maximum value (such as 65,535
for a 16 bit counter-uint16 data type) and upon reaching that
value will start over at 0. A graphical representation of this
concept is illustrated in the top half of FIG. 3 (the ping timer
301). As time moves forward and a counter (ping timer) is
incremented, the value of the ping timer 301 increases lin-
early. In FIG. 3, the value of the timer 301 is its minimum
value (e.g., zero) at time t0 and the value is its maximum value
(e.g., 65,535) at about time t2. As illustrated, once the timer
301 reaches its maximum value and is then incremented, the
value of the timer 301 overflows to its minimum value.

Consider an example situation in which a timer having a
maximum value of 65,535 is incremented once each second
and is used to measure a time interval of five minutes (i.e., 300
seconds). If at the start of the 5-minute interval the value of the
timer is 14,000, then the 5-minute interval is known to be
complete when the timer has a value of 14,300. Thus, the end
time of the interval is calculated by adding the interval to the
initial value of the timer at the beginning of the interval. On
the other hand, if the initial value of the timer at the start of the

10

15

20

25

30

35

40

45

50

55

60

65

4

interval is 65,500, then the timer will reach an overflow state
before the 5-minute interval is complete. This can cause an
error when calculating the end time of the interval and may
result in problems, such as, for example, an infinite time
interval.

Embodiments of the present invention solve this problem
by providing a system of timing that includes a ping timer 301
and a pong timer 302, which avoids errors with respect to
timer overflow. An important aspect of such embodiments is
that the value of the pong timer 302 is offset from the value of
the ping timer 301. A time checker accesses the ping timer
301 to determine whether a time interval has passed, as
described in the example above, but the time checker, upon
determining that the time interval has passed, switches access
to the pong timer 302 before the ping timer 301 reaches an
overflow state.

As illustrated in FIG. 3, the value of the pong timer 302
may be offset from the ping timer 301 by half of the maximum
value of the timers. This way, when one timer is near its
overflow state, the other timer is relatively far from its over-
flow state. For example, the time checker may first point to the
ping timer 301 and use the ping timer 301 to calculate a time
interval. The time checker may continue to use the ping timer
301 between times t0 and t1 without danger of the ping timer
overflowing, but once the ping timer 301 has a value of greater
than half of its maximum value, the danger of overflow
increases. Thus, after time t1 and at the end of an interval, the
time checker switches to using the pong timer 302 for its
calculations. As illustrated, the pong timer 302 is not near its
overflow state between times t1 and t2, and the time checker
may continue to use the pong timer 302 between times t1 and
12 without danger of the pong timer 301 overflowing. Simi-
larly, after time 12, the time checker may switch back to using
the ping timer 301 at the end of an interval. The time checker
can continue to switch back and forth between the ping and
pong timers 301, 302 in this manner to avoid timer overflow
problems.

Accordingly, the ping timer and the pong timer may (i)
each reach a maximum value before respectively reaching the
overflow state, (ii) each reset to a minimum value upon
respectively reaching the overflow state, and (iii) be offset
from each other by one half of the maximum value. Further,
the time checker may switch access to the pong timer upon
determining that the time interval has passed and in an event
the value of the ping timer exceeds one half of the maximum
value, and may switch access from the pong timer back to the
ping timer before the pong timer reaches the overtlow state. In
addition, the time checker may access the ping and pong
timers using a pointer, a central controller may simulta-
neously update both the ping timer and the pong timer, and a
separate module may use the time checker to determine
whether the time interval has passed and then perform a
subsequent action based on the determination.

The ping timer and the pong timer can each include mul-
tiple representations of time at multiple levels of time granu-
larity, and the multiple representations of time may be
updated during an interrupt service routine. It should be
appreciated that a plurality of time checkers may indepen-
dently access the ping and pong timers to determine whether
time intervals have passed. It should also be appreciated that
the system may include at least one additional timer, and that
each respective value of the additional timers is offset from
the values of the ping timer, the pong timer, and any other of
the timers. In such a system, the time checker may rotates
through all ofthe timers by (i) switching access from the pong
timer to a first of the additional timers before the pong timer
reaches the overflow state and (ii) switching access from a last

US 9,405,342 B2

5

of the additional timers back to the ping timer before the last
timer reaches the overflow state.

Another embodiment may be an associated method of pro-
viding timing by updating a ping time and a pong time, where
the pong time is offset from the ping time, accessing the ping
time to determine whether a time interval has passed, and,
upon determining that the time interval has passed, switching
access to the pong time before the ping time overflows.

Another embodiment may be a computer readable medium
having computer readable program codes embodied therein
for providing timing. The computer readable program codes
include instructions that, when executed by a processor, cause
the processor to allocate memory for a ping timer, allocate
memory for a pong timer, where the value of the pong timer
being offset from the value of the ping timer, access the ping
timer to determine whether a time interval has passed, and,
upon determining that the time interval has passed, switch
access to the pong timer before the ping timer reaches an
overflow state.

Yet another embodiment may be an uninterruptible power
supply (UPS) system that includes a battery, a ping timer, and
apong timer, where the value of the pong timer is offset from
the value of the ping timer. As in the other example embodi-
ments, the example UPS system includes a time checker that
accesses the ping timer to determine whether a time interval
has passed and, upon determining that the time interval has
passed, the time checker switches access to the pong timer
before the ping timer reaches an overflow state. Additionally,
the UPS system includes a charging module that is configured
to store power in the battery from an external power source
based on the time interval(s) determined by the time checker.

Other embodiments may include systems for providing a
timer. Such embodiments include multiple processor-level
memory locations storing a representation of time at a lowest
level of time granularity and multiple other representations of
time at respectively higher levels of time granularity, an
update unit configured to update the representations of time
on a regular basis at least as often as the lowest level of time
granularity, and a data structure enabling access to the repre-
sentations of time, where the data structure includes address
information for the memory locations. Such embodiments
may include levels of time granularity that relate to calendar
units.

Other embodiments may include associated methods of
providing a timer. Such methods include allocating multiple
processor-level memory locations to store a representation of
time at a lowest level of time granularity and multiple other
representations of time at respectively higher levels of time
granularity, updating the representations of time on a regular
basis at least as often as the lowest level of time granularity,
and enabling access to the representations of time through a
data structure that includes address information for the
memory locations. As in the systems for providing a timer, the
methods may include levels of time granularity relating to
calendar units.

FIGS. 4A and 4B are schematic diagrams illustrating the
ping timer 410, the pong timer 415, and the time checker 425
that access the ping and pong timers 410, 415, according to an
embodiment of the present invention. As described above, the
ping timer 410 and the pong timer 415 reside in memory and
may be, for example, 16-bit unsigned integers (unitl6). A
separate module uses a time checker 425 to access the ping
and pong timers 410, 415. The time checker 425 may be a part
of the module 420 or may be separate from the module 420.
FIG. 4A shows that the time checker 425 initially may point
to and access the ping timer 410. FIG. 4B shows that the time

20

30

40

45

6

checker 425 may switch to and access the pong timer 415
when the ping timer 410 crosses the halfway point to its
overflow state.

FIG. 5 is a flow diagram 500 illustrating using a ping timer,
apong timer, and a time checker to provide timing, according
to an embodiment of the present invention. Before a time
checker access the ping and pong timers, the ping timer is set
to a value of zero and the pong timer is set to a value equal to
half of the maximum value of the timers (505). For example,
if the maximum value of the timers is 65,535, then the ping
timer is set to 0, and the pong timer is set to 32767. The time
checker may then be initialized by, for example, instantiating
a time checker object that is used to track time intervals in
minutes (510). To measure a given time interval, the time
checker is then configured with the given interval of time
(e.g., S minutes). The time checker is then set to initially point
to the ping timer and an end time is determined from the value
of'the ping timer for when the interval will have passed (520).
The end time may be calculated by adding the given time
interval to the current value of the ping timer, as described
above. At a regular rate, the time checker then determined
whether the time interval has passed by comparing the calcu-
lated end time with the value of the ping timer (525, 530). If
the time interval has not passed, then the time checker checks
the ping timer again after the ping timer is updated.

On the other hand, if the time interval has passed, a related
action may be taken (535). Before calculating a new end time
for the next interval, the time checker determines whether the
value of the ping timer exceeds half of the maximum value of
the timers (540, 545). If the values does not exceed half of the
maximum value, then the time check remain pointing to and
accessing the ping timer, and the new end time is based on the
value of the ping timer (555, 560). But if the values does
exceed half of the maximum value, then the time checker is
set to point to the pong timer and the new end time is based on
the value of the pong timer (550, 555, 560). As described
above, the switching of the time checker back and forth
between the ping and pong timers avoids problems associated
with timer overflow.

The following provides further guidance on how to make
and use the ping-pong timing systems and methods in an
efficient manner.

Example Data Structures Used to Implement the Ping-
Pong Timers

The following are example data structures that may be used
to implement a ping-pong timer system. The example data
structures are represented in the C programming language,
but any appropriate programming language may be used.

enum {
HOURS_LOC,
MINUTES_LOC,
SECONDS__LOC,
MSECONDS_LOC

struct RTCRECORD {

Uintl6 Hours; // hours accumulation
Uintl6 Minutes; // minutes accumulation
Uintl6 Seconds; // seconds accumulation
Uintl6 MSecs; // milliseconds accumulation

i
typedef struct RTCRECORD RTC__REC;
struct SYSYTEM__TIMERS {

RTC_REC Ping; // Ping rtc timer
RTC_REC Pong; // Pong rte timer
Uintl6 Hr; // local hours
Uintl6 Min; // local minutes
Uintl6 Sec; // local seconds
Uintl6 Msec; // local milliseconds

US 9,405,342 B2

8

-continued

-continued
Ulint16 Adjust; // adjust time lost.
// Not needed if precise
// timing can be achieved
Ulint16 pSmSec;

i

typedef struct SYSYTEM__ TIMERS SYSTIMER;
extern SYSTIMER SysTime;

struct CALENDAR__RECORD {

Ulint16 YY; // year
Ulint16 MM; // month
Ulint16 DD; // date
%
typedef struct CALENDAR__ RECORD CAL_REC;
extern CAL__REC CalRec;
extern CAL_ REC LocalCalRec; // Local Calendar

// memory location
struct _ Tmr_ FLAGS {

Uintl6 TOFlag 11 // bit0 - Cycle Counter Flag
Ulint16 State 11 // bitl - timer idle(0)
// or active(1)
Ulint16 Slice 1 6; // bits[2:7] - can handle
// up to 64 slices
Uint16 Tmrldx 1 2; // 0-hours; 1-minutes;
// 2-seconds; 3-mSec
i
union TMR__FLGS {
Uint16 all;
struct _Tmr_ FLAGS bit;
i
struct _ CHECK__TIMER {
RTC_REC *pTimer; // timer pointer
Uint16 EndTime; // Endtime
Uint16 Interval; // Msecs, Seconds, Minutes,
// Hours...
union TMR__FLGS Flag;
i

typedef volatile struct _ CHECK__TIMER CHECK_ TIMER;

Example Time-Out Routine Used to Check for a Time-
Checker’s Time-Out Condition and to Handle Ping-Pong
Switching

J/:
/
// Tmr_TimeOut () -

common function to check

/ time-out condition.

/

/' input:

/ CHECK_TIMER *pCheck- points to timer check
/ structure

/ Uintl6 idx - type of the timer

/ (ms, sec, min, or hour)

BOOLEAN Tmr_TimeOut (CHECK_TIMER *pCheck, Uint16 idx)
{

Ulint16 *pCurTime;

CHECK_TIMER *pCurCheck;

pCurCheck = pCheck;

pCurTime = (Uintl 6 *)pCurCheck->pTimer + idx;

if (*pCurTime >= pCurCheck->EndTime)

// TOFlag means TimeOutFlag
pCurCheck->Flag.bit. TOFlag = TRUE;
if (ValTheBit(*pCurTime, BIT15))

// At this point, it is known that the

/feurrent pTimerGroup->pTimer’s

// curTime is greater than the turning

// point, so it is needed to switch to

// the other timer (Ping or Pong).

pCurCheck->pTimer = Tmr_SelectPingPong
(pCurCheck->pTimer);

10

15

20

25

30

35

40

45

50

55

60

65

pCurTime = (Uintl6 *)pCurCheck->pTimer
+ idx;
pCurCheck->EndTime =
pCurCheck->Interval + *pCurTime;
return (TRUE);

return (FALSE);

The following examples focus on how to set up the ping-
pong timing control system in order to achieve a high level of
performance depending on the particular application of the
ping-pong timer.

EXAMPLE 1
Set-Up and Update Group Timers

If milliseconds cycle timers are to be used, the two func-
tions for milliseconds cycle timers update should be put in a
main loop so that the time-out condition can be updated
accordingly, for example, every two milliseconds. The same
logic applies to other types of timers, for example, seconds
cycle timers. Because every individual “time slice” would be
called about 32 ms, the two functions for seconds cycle timers
update need only be called in one time slice rather than being
called every time slice, thereby greatly reducing the number
of instruction cycles used for timing control.

Main ()
"\;Vhile (D
switch (timeSlice)

case 1:
.k;.reak;

;;156 14:
.k;.reak;

case 15:

Tmr_CycleSecondTimeOutUpdate();
break;

TicService();
Tmr_CycleMsTimeOutUpdate();

It should be noted that the time-out intervals for all of the
seconds cycle timers are greater than or equal to one second.
Thus, calling a time-out update function every 32 ms would
satisfy the accuracy requirements for any seconds cycle tim-
ers. Compared to being called every 2 ms, being called every
32 ms takes only Yis of the amount of time. This greatly
reduces the instruction cycles needed for the timing control
processes. This not only simplifies code management, but
further reduces the total number of instructions for time-out
condition checking.

It should also be noted that the time-out intervals for any
milliseconds cycle timers are typically greater than two mil-
liseconds. Thus, calling a time-out update function for any
milliseconds cycle timers would still satisfy the accuracy
requirements because the time slice for the above example

US 9,405,342 B2

9

main loop is about two milliseconds. This results in an overall
improvement in system efficiency.
The following is an example of calling the above functions:

if (ValTheBit(State.Current, BIT1)) {
if (Tmr_IsTimeOut
(&SecTimersByMainLoop[TIMER_SYS_ONE_SEC])
&& (dcBusVoltage < DC_BUS_LO_THRESHOLD)){
DC_TO_DC_ENABLE;

}

else if(dcBusVoltage > DC_BUS_HI_THRESHOLD) {
DC_TO_DC_DISABLE;

}

EXAMPLE 2

Local Timer Application

Way #1. Initialize once, free run forever timer.

Step 1: Initialize local timer.

For milliseconds timer:

Tmr_SetTimeOutMSeconds (&Local_msTimer, msInter-
val);

For Seconds timer:

Tmr_SetTimeOutSeconds (&Local_Timer, secondsInter-
val);

For Minutes timer:

Tmr_SetTimeOutMinutes (&Local_Timer, minutesInter-
val);

For Hours timer:

Tmr_SetTimeOutHours
Interval);

...andsoon...

Step 2: Use local timer to control timing.

For milliseconds timer:

(&Local_Timer, hours-

if (Tmr_MSecondsTimeOut(&Local_msTimer)) {

For seconds timer:
if (Tmr_SecondsTimeOut(&Local_Timer)) {

For minutes timer:
if (Tmr_MinutesTimeOut(&Local_Timer)) {

For seconds timer:
if (Tmr_HoursTimeOut(& Local_Timer)) {

..andsoon...

The only overhead that occurs is when the timing functions
are being called. Way #1 is good for cases that do not need a
timer to start at an absolute accurate point to control the
timing because it takes much less instructions to do the timing
control.

Example of using Way #1:

void Batt_LocalTimerInit (void)
{
Batt_RegTimerInit(FIVE_SECONDS);
Tmr_SetTimeOutMSeconds
(BattRegs.CheckTimer100ms,
HUNDRED_M_SECONDS);
// The following timers need to be started
// at a specific moment; therefore, set timer
// flag to IDLE state.

10

15

25

30

35

40

50

55

60

65

10

-continued

Tmr_IdleTheTimer(&BattRegs.Check Timer);
Tmr_IdleTheTimer(&BattRegs.LowBattTimer);
Tmr_IdleTheTimer(&BattRegs. BattDisStart Timer);
Tmr_IdleTheTimer(&BattRegs.BattDisconTest Timer);

void Batt_ePwm3_DutyTest (void)

{
static int16 DutyCountsA = 0;
static int16 DutyPercent = 0;
if (Tmr_MSecondsTimeOut
(&BattRegs.CheckTimer1 00ms))
{
if (DutyCountsA++ > PWM3_PERIOD)
DutyCountsA = 0;
EPwm3Regs.CMPA half.CMPA = DutyCountsA;
if (DutyPercent++ > 100)
DutyPercent = 0;
Batt_UpdateEPwm3bDutyCycle(DutyPercent);
¥
¥

Way #2. Start/Restart at specific point, IDLE when time-
out.

Step 1: Set the local timer to IDLE state.

Tmr_IdleTheTimer(&Local_Timer);

Step 2: Set/Reset the local timer at each time.

If (Tmr_IsIdle(&Local_Timer)

Tmr_SetTimeOutMSeconds(&Local_Timer);

Step 3: When time-out, set the timer to IDLE condition.

else if (Tmr_MSecondsTimeOut(&Local_Timer))

{

Tmr_IdleTheTimer(&BattRegs.LowBattTimer);

Step 4: Go to step 2.

Because the timer needs to be initialized every time, it takes
more instructions; however, this approach provides a more
precise timing control.

Example of using Way #2:

In function void Batt_LocalTimerInit (void)
Tmr_IdleTheTimer(&BattRegs.LowBattTimer);
In function void CheckLowBattery (void)

batteryVoltage = Adc_ReadAvg(ADC_BATT_VOLT_IDX,
SIGNAL_TYPE_DC);
if (battery Voltage < LOW_BATTERY_VOLTAGE) {
// Start One Second Timer,
// Upon Timeout Set Low Batt Flag
if (Tmr_IsIdle(&BattRegs.LowBattTimer)) {
Tmr_SetTimeOutMSeconds
(&BattRegs.LowBattTimer,
ONE_SECOND_MS_CNTS);

else if (Tmr_MSecondsTimeOut
(&BattRegs. LowBattTimer)) {
State. TransitionVariables1.
bit. LowBatteryShutdown = TRUE;
Ul Alarm.bit.LowBattery = TRUE;

US 9,405,342 B2

11

-continued

else {
State. TransitionVariablesl.
bit. LowBattery Shutdown = FALSE;
Tmr_IdleTheTimer(&BattRegs. LowBattTimer);

EXAMPLE 3

Function Calling Technique

Tmr_MSecondsTimeOut(&ButtonRegs.Check TimerHalf);
if (Tmr_IsTimeOut(&ButtonRegs.CheckTimerHalf))

// Sample button press analog channel
bButtonPressed = ON_OFF_BUTTON_INPUT;

}

else

bButtonPressed = 0;

Tmr_MSecondsTimeOut() returns the result of whether
there is a time-out. Therefore, directly checking the returning
value from Tmr_MSecondsTimeOut() call (shown as below)

is sufficient.
Recommend Solution:

if (Tmr_MSeconds TimeOut
(&ButtonRegs.CheckTimerHalf))

// Sample button press analog channel
bButtonPressed = ON_OFF_BUTTON_INPUT;

}

else

{
¥

bButtonPressed = 0;

Another example:
One possible way:

Tmr_MSecondsTimeOut(&BattRegs.CheckTimer100ms);
if (Tmr__IsTimeOut (&BattRegs.Check Timer100ms))
{
Tmr_ ResetTimeOutFlag
(&BattRegs.CheckTimer100ms);

Second, but better, way:

if (Tmr_MSecondsTimeOut
(&BattRegs.CheckTimerl 00ms))

EXAMPLE 4

In Specific Conditions

In the following case, Fault.FaultValidTimer is checked in
limited places. The time-out condition (in function EvalDC-

10

15

20

25

30

35

40

50

55

60

65

12
BusFault()) should be determined first, then only check
TOFlag later (in function EvalOutputFault()). This is suffi-
cient to control timing; however, it is necessary to clear the
flag after checking the flag and finding that time-out has
occurred.

void EvalDCBusFault (void)

{

Uintl6 dcBusSample;

// * Process DC Bus Fault 1 sec

// after First time on Line

if (ValTheBit(State.Current, BIT5))

if (Tmr_IsIdle(&Fault.FaultValidTimer))

Tmr_SetTimeOutSeconds(&Fault.FaultValid Timer,
ONE_SECOND);

else if (Tmr_SecondsTimeOut
(&Fault. FaultValidTimer))

deBusSample = Adec_Read(ADC_DCBUS_VOLT_IDX,
SIGNAL_TYPE_DC);
if (deBusSample < DCBUS_FAULT 75V_CNTS)

if(!State. WarningFlags.bit. DCBusBadOnce)

State.WarningFlags.bit. DCBusBadOnce = TRUE;

}

else

State.FaultFlags.bit. DCBusUnderVoltage
=TRUE;

State.WarningFlags.bit. DCBusBadOnce
= FALSE;

ULAlarm.bit.Overload = TRUE;

UpdateNewState(FAULT);

¥
¥

else

{

State.WarningFlags.bit. DCBusBadOnce = FALSE;

else

Tmr_IdleTheTimer(&Fault. FaultValidTimer);

¥
void EvalOutputFault (void)
if (ValTheBit(State.Current, BIT5))

// Check Fault.FaultValid Timer.Flag.bit. TOFlag
if (Tmr_IsTimeOut(&Fault. FaultValid Timer))
{
Tmr_ResetTimeOutFlag(&Fault.FaultValidTimer);
if (RMS_Array[ADC_OUTPUT_VOLT_IDX].CurrRMSValue
< OUTPUT_FAULT_350V_CNTS)

if (!State.WarningFlags.bit.OutputBadOnce)
{
State.WarningFlags.bit.OutputBadOnce
=TRUE;
¥

else

State.FaultFlags.bit.OutputVoltage
=TRUE;

State.WarningFlags.bit.OutputBadOnce
= FALSE;

ULAlarm.bit.ShortCircuit = TRUE;

UpdateNewState(FAULT);

US 9,405,342 B2

-continued -continued
else else if (UL BeeperState > 5)
State.WarningFlags.bit.OutputBadOnce Ul BeeperState = 0;
= FALSE; 5 }
¥ ¥
¥
¥
¥
0 EXAMPLE 6

Using One Time-Checker For Different Intervals

EXAMPLE 5

One time-checker may be used to track different time inter-
vals at different levels of time granularity, depending in the
state of the system that is using the time checker. For example,
a time checker may be used, at first, to monitor a system’s
battery power level every 5 hours. If'the battery is determined
to be below a certain threshold level, the time checker may

Timing Control Beepers 15

Approach without ping-pong timers:

J/ this is shadow of 1 Sec abs fimer 5o then b? used to monitor the battery every 20 minutes. The
if (OneSecAbsTimer != SysTime.Sec) following code illustrates another example.

OneSecAbsTimer = SysTime.Sec;

RelaceBattery Timer++; // counts every second CHECK_TIMER *pCheck;
. if (Tmr_TimeOut
/1 beep for the first 60 seconds (1 mimute) 25 (pCheck, (Uint16)pCheck->Flag.bit. TrrIdx))

if (RelaceBatteryTimer < 60)

. if (!BattRegs.BattFlags.
if ((UL.BeeperState > 0)&&(ULBeeperState < 3)) bit. BattPresentTestInProg)

{
// Set bit if failed self test results are
30 // valid

Ul.ControlReg.bit. AudibleAlarm = TRUE;

else if (UL BeeperState > 5)

// every 5 seconds, start the battery

ULBeeperState = 0; // disconnect test

¥
. // set time for the test to 60 ms
/1’5 hours have passed, reset time pCheck->Flag bit. TmrIdx = MSECONDS_LOC;
(/ to beep for 1 mln.ute again 35 Tmr_SetTimeOut
if (RelaceBatteryTimer > 18000) (pCheck, SIXTY_M_SECONDS, MSECONDS_LOC);
RelaceBatteryTimer = 0; }1
else
! {
// When on-line, Every 5 seconds when at
. . .. 40 // float voltage, do battery disconnected
Approach using Ping-Pong Timing Control System: J/ test at “start” time
// set next time to do this disconnect test
if (Tmr_IsIdle(&ULBatteryReplace Timer)) pCheck->Flag bit. Tmrldx = SECONDS_LOC;
Tmr_SetTimeOut
Tmr_SetTimeOutMinutes 45 (pCheck, FIVE_SECONDS, SECONDS_LOC);
(&ULBatteryReplaceTimer, ONE_MINUTE); }

else if (Tmr_Minutes TimeOut

&ULBatteryReplaceTi
¢ uteryReplaceTimen) Advantages of using the Ping-Pong Timing Control Sys-

if (ULBatteryReplaceTimer.Interval == 50 tem include (1) avoiding directly calling system timers, (2)
ONE_MINUTE) consuming less processing instructions, resulting in better
Tmr SetTimeOutMinutes organized and more efﬁcient functioning, and (3) a different

(&U1BatteryReplaceTimer, FIVE_HOURS); “Interval” can be applied on the same local timer freely dur-
ing the process.

else 55 FIGS. 6A-C illustrate, at three different points in time,
/'S hours have passed, reset time fo beep example values of t.he Variabl.es that may be usgd to imple-
/f for 1 minute again ment the example ping-pong timer systems described above.
Trmr_IdleTheTimer(&ULBatteryReplaceTimer); FIG. 6A illustrates three “seconds” time-checkers; a 34-sec-

} ond, 1-second, and 76-second time checker, which run con-

else if (UL BatteryReplaceTimer Tnferval == 60 cmrently. The “pTimer” Valpe indicates Fhe timer (ping timer
ONE_MINUTE) or pong timer) to which the time checker is currently pointing.
All three time checkers in FIG. 6A are pointing to the pong

// beep for the first 60 seconds (1 minute) timer (0x000088DD). FIG. 6B also illustrates three time

IF (UL BeeperState > 0)&&(UL BeeperState < 3)) checkers. The “TransitionChecker” illustrates a time checker
ULControlReg bit. AudibleAlarm = TRUE; 65 thathas already timed-out and that is left “free-running” until

1 the next time it is reset, that is, it will not be checked again

until the next time it is reset. The “NineMinsChecker” is a

US 9,405,342 B2

15

nine-minute time checker and the “TenSecsChecker” is a
ten-second time checker. All three time checkers are pointing
to the ping timer (0x000088D9). F1G. 6C illustrates a point in
time when the “NineMinsChecker” and the “TenSec-
sChecker” have timed-out at least once, have crossed the
halfway point with respect to the ping timer, as described
above, and are, as a result, now pointing to the pong timer
(0x000088DD). As illustrated, the “TransitionChecker” is
still free-running and pointing to the ping timer.

FIG. 7 is a block diagram illustrating a system 705 for
providing a timer, according to an embodiment of the present
invention. The system 705 includes multiple processor-level
memory locations 721-729, which store a representations of
time at a lowest level of time granularity (e.g., nanoseconds
721) and multiple other representations of time at respec-
tively higher levels of time granularity 722-729. The system
705 also includes an update unit 735 that updates the repre-
sentations of time 721-729 on a regular basis 737. It should be
understood that the representations 721-729 are updated at
least as often as the lowest level of time granularity 721. The
system 705 further includes a data structure 715 that includes
address information 717 for the memory locations 721-729
and that enables access to the representations of time 721-
729. As illustrated, the levels of time granularity may include
levels that relate to calendar units (e.g., days 727, months 728,
and years 729).

While this invention has been particularly shown and
described with references to example embodiments thereof, it
will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the scope of the invention encompassed by the
appended claims.

It should be understood that the diagrams of FIGS. 4 and 5
are examples that can include more or fewer components, be
partitioned into subunits, or be implemented in different com-
binations. Moreover, the flow diagram of FIG. 5 may be
implemented in hardware, firmware, or software. If imple-
mented in software, the software may be written in any soft-
ware language suitable for use in the example computer archi-
tecture illustrated in FIG. 2. Although examples of computer
code have been provided that are written in the C program-
ming language, any appropriate programming language may
be used. The software may be embodied on any form of
computer readable medium, such as RAM, ROM, or mag-
netic or optical disk, and loaded and executed by generic or
custom processor(s).

The disclosed embodiments can be applied to any UPS
topology, such as off-line, line interactive, or double conver-
sion. An example UPS topology is illustrated in FIG. 8. The
UPS 10 includes an input filter/surge protector 12, a transfer
switch 14, a controller 16, a battery 18, a battery charger 19,
an inverter 20, and a DC-AC converter 23. The UPS also
includes an input 24 for coupling to an AC power source and
an outlet 26 for coupling to a load. The UPS 10 operates as
follows. The filter/surge protector 12 receives input AC power
from the AC power source through the input 24, filters the
input AC power and provides filtered AC power to the transfer
switch and the battery charger. The transfer switch 14
receives the AC power from the filter/surge protector 12 and
also receives AC power from the inverter 20. The controller
16 determines whether the AC power available from the filter/
surge protector is within predetermined tolerances, and if so,
controls the transfer switch to provide the AC power from the
filter/surge protector to the outlet 26. If the AC power from the
rectifier is not within the predetermined tolerances, which
may occur because of “brown out,” “high line,” or “black out”
conditions, or due to power surges, then the controller con-

20

25

30

35

40

45

16

trols the transfer switch to provide the AC power from the
inverter 20. The DC-AC converter 23 is an optional compo-
nent that converts the output of the battery to a voltage that is
compatible with the inverter. Depending on the particular
inverter and battery used, the inverter may be operatively
coupled to the battery either directly or through a converter.

The example timers presented herein are illustrated with
respectto such a UPS application, but it should be understood
that the timers can be applied to any device using timers with
multiple timing intervals, such as, for example, general pur-
pose computers, handheld devices with processors using real-
time or pseudo-real-time processors, clocks, watches, or
other electrical devices employing timers. Further, the
example timers presented herein are described using two (i.e.,
ping and pong).timers. In other embodiments, more than two
timers can be used (e.g., three timers) and applied in a manner
similar to the two-timer examples presented herein.

What is claimed is:

1. A system for providing timing, the system comprising:

a processing device including:

a memory;

a ping timer;

apong timer, a value of the pong timer being offset from
a value of the ping timer in the memory; and

a control unit coupled to the memory via a processor bus
and configured to execute instructions that implement
a time checker, the time checker being a logical timer
that accesses the ping timer via the processor bus to
determine whether a time interval has passed and,
upon determining that the time interval has passed,
the time checker switches access from the ping timer
to the pong timer before the value of the ping timer
reaches an overflow state due to a limited number of
bits in the memory allocated to storage thereof.

2. A system as in claim 1 wherein values of the ping timer
and the pong timer increase linearly at a same rate of increase.

3. A system as in claim 1 wherein the ping timer and the
pong timer (i) each reach a maximum value before respec-
tively reaching the overflow state, (ii) each reset to a mini-
mum value upon respectively reaching the overflow state, and
(iii) are offset from each other by one half of the maximum
value.

4. A system as in claim 3 wherein the time checker switches
access to the pong timer upon determining that the time
interval has passed and in an event the value of the ping timer
exceeds one half of the maximum value.

5. A system as in claim 1 wherein the ping timer and the
pong timer each include multiple representations of time at
multiple levels of time granularity.

6. A system as in claim 5 wherein the multiple representa-
tions of time are updated during an interrupt service routine,
the interrupt service routine being a callback subroutine in an
operating system or device driver executed based on an inter-
rupt allowed by the control unit.

7. A system as in claim 1 wherein the time checker accesses
the timers using a pointer to the memory.

8. A system as in claim 1 wherein the control unit is further
configured to simultaneously update the ping timer and the
pong timer.

9. A system as in claim 1 wherein the time checker further
switches access from the pong timer back to the ping timer
before the pong timer reaches the overflow state.

10. A system as in claim 1 wherein the processing device
further includes:

a plurality of time checkers that independently access the

ping and pong timers to determine whether time inter-
vals have passed.

US 9,405,342 B2

17

11. A system as in claim 1 wherein the processing device
further includes:

at least one additional timer, each respective value of the at

least one additional timer being offset from the values of
the ping timer, the pong timer, and any other of the at
least one additional timer; and
wherein the time checker rotates through all of the timers
by further (i) switching access from the pong timer to a
first timer of the at least one additional timer before the
pong timer reaches the overflow state and (ii) switching
access from a last timer of the at least one additional
timer back to the ping timer before the last timer reaches
the overtlow state.
12. A system as in claim 1 wherein, in an event the time
checker determines that the time interval has passed, the
control unit is further configured to execute instructions to
perform a subsequent action based on the determination.
13. A method of providing timing, the method comprising:
by a processor, updating a ping time and a pong time in a
memory, the pong time being offset from the ping time;

by the processor, accessing the ping time in the memory to
determine whether a time interval has passed; and

upon determining that the time interval has passed, the
processor switching access from the ping time to the
pong time before the ping time reaches an overflow state
due to a limited number of bits in the memory allocated
to storage thereof.

14. A method as in claim 13 wherein updating the ping time
and the pong time includes (i) updating the ping time with a
maximum value before the ping time overflows and, upon the
ping time overtflowing, resetting the ping time with a mini-
mum value and (ii) updating the pong time with a maximum
value before the pong time overflows and, upon the pong time
overflowing, resetting the pong time with a minimum value;
and

wherein the ping time and the pong time are offset from

each other by one half of the maximum value.

15. A method as in claim 14 wherein switching access to
the pong time includes switching access to the pong time
upon determining that the time interval has passed and in an
event the ping time exceeds one half of the maximum value.

16. A method as in claim 13 wherein updating the ping time
and the pong time includes updating multiple representations
of time at multiple levels of time granularity.

17. A method as in claim 16 further comprising:

updating the multiple representations of time during an

interrupt service routine, the interrupt service routine
being a callback subroutine in an operating system or
device driver executed based on an interrupt allowed by
the processor.

18. A method as in claim 13 wherein accessing the ping
time includes accessing the ping time using a pointer that
points to a first memory location storing the ping time, and
wherein switching access to the pong time includes pointing
the pointer to a second memory location storing the pong
time.

19. A method as in claim 13 further including:

switching access from the pong time back to the ping time

before the pong time overflows.

20. A method as in claim 13 further comprising:

updating at least one additional time, each of the at least

one additional time being offset from the ping time, the
pong time, and any other of the at least one additional
time; and

wherein switching access includes rotating through all of

the times by further (i) switching access from the pong
time to a first time of the at least one additional time

5

10

15

20

25

30

35

40

45

50

55

60

18

before the pong time overflows and (ii) switching access
from a last time of the at least one additional time back
to the ping time before the last time overflows.

21. A method as in claim 13 further comprising:

enabling a module to access the ping time and the pong

time to determine whether the time interval has passed,
the module subsequently performing an action based on
the determination.

22. A computer readable medium having computer read-
able program codes embodied therein for providing timing,
the computer readable program codes including instructions
that, when executed by a processor, cause the processor to:

allocate memory for a ping timer in a memory;

allocate memory for a pong timer in the memory, a value of

the pong timer being offset from a value of the ping
timer;

access the ping timer to determine whether a time interval

has passed; and

upon determining that the time interval has passed, switch

access from the ping timer to the pong timer before the
ping timer reaches an overflow state due to a limited
number of bits in the memory allocated to storage
thereof.

23. A system for providing a timer, the system comprising:

multiple processor-level memory locations in a memory

storing a representation of time at a lowest level of time
granularity and multiple other representations of time at
respectively higher levels of time granularity for repre-
senting a value of a ping timer and a value of a pong
timer, the value of the pong timer represented being
offset from the value of the ping timer represented;

an update unit configured to update the stored representa-

tions of time on a regular basis at least as often as the
lowest level of time granularity via address information;

a data structure enabling access to the stored representa-

tions of time, the data structure including the address
information for the multiple processor-level memory
locations; and
a timer checker, the time checker being a logical timer
configured to access the ping and pong timers via the
address information to determine whether a time inter-
val has passed, and upon determining that the time inter-
val has passed, switch access from the ping timer to the
pong timer before the value of the ping timer represented
reaches an overflow state due to a limited number of bits
in the memory allocated to storage thereof.
24. A system as in claim 23 wherein the multiple other
representations of time at respectively higher levels of time
granularity include levels of time granularity relating to cal-
endar units.
25. A method of providing a timer, the method comprising:
allocating multiple processor-level memory locations in a
memory to store a representation of time at a lowest level
of time granularity and multiple other representations of
time at respectively higher levels of time granularity for
representing a value of a ping timer and a value of pong
timer, the value of the pong timer represented being
offset from the value of the ping timer represented;

updating the stored representations of time on a regular
basis at least as often as the lowest level of time granu-
larity via address information;

to accessing the stored representations of time through a

data structure including the address information for the
multiple processor-level memory locations to determine
whether a time interval has passed; and

upon determining that the time interval has passed, switch-

ing access from the ping timer to the pong timer before

US 9,405,342 B2

19

the value of the ping timer represented reaches an over-
flow state due to a limited number of bits in the memory
allocated to storage thereof.

26. A method as in claim 25 wherein the multiple other
representations of time at respectively higher levels of time
granularity include levels of time granularity relating to cal-
endar units.

27. An uninterruptible power supply system, comprising:

a battery;

a processing device including:

a memory;

a ping timer;

apong timer, a value of the pong timer being offset from
a value of the ping timer in the memory;

a control unit coupled to the memory via a processor bus
and configured to execute instructions that implement
a time checker, the time checker being a logical timer
that accesses the ping timer via the processor bus to
determine whether a time interval has passed and,
upon determining that the time interval has passed,
the time checker switches access from the ping timer
to the pong timer before the ping timer reaches an
overflow state due to a limited number of bits in the
memory allocated to storage thereof; and

a charging module configured to store power in the bat-
tery from a power source by monitoring power in the
battery in an event the time interval has passed, as
determined by the time checker.

#* #* #* #* #*

10

15

20

25

20

